Models for Inexact Reasoning

Fuzzy Logic – Lesson 2
Fuzzy Propositions

Master in Computational Logic
Department of Artificial Intelligence
Fuzzy Propositions

• Main difference between classical propositions and fuzzy propositions:
 – The range of their truth values: [0, 1]

• We will focus on the following types of propositions:
 – Unconditional and unqualified propositions
 • “The temperature is high”
 – Unconditional and qualified propositions
 • “The temperature is high is very true”
 – Conditional and unqualified propositions
 • “If the temperature is high, then it is hot”
 – Conditional and qualified propositions
 • “If the temperature is high, then it is hot is true”
Unconditional and Unqualified Fuzzy Propositions

• The canonical form p of fuzzy propositions of this type is:

$$p : V \text{ is } F$$

• V is a variable that takes values v from some universal set E

• F is a fuzzy set on E that represents a given imprecise predicate: tall, expensive, low, etc.

• Example:

$$p: \text{temperature (V) is high (F)}$$
Unconditional and Unqualified Fuzzy Propositions

• Given a particular value $V = v$, this individual belongs to F with membership grade $\mu_F(v)$

• The membership grade is interpreted as the degree of truth $T(p)$ of proposition p

$$T(p) = \mu_F(v)$$

• Note that T is also a fuzzy set on $[0, 1]$
 – It assigns truth value $\mu_F(v)$ to each value v of variable V
Example

- Let V be the air temperature (in °F) at some place on the Earth
- Let F be the fuzzy set that represents the predicate “high” (temperature)
Example

• The degree of truth $T(p)$ depends on:
 – The actual value of the temperature
 – The given definition (meaning) of predicate high

• Let us suppose that the actual temperature is 85 F
Unconditional and Unqualified Fuzzy Propositions

• Role of function T:
 – Provide us with a “bridge” between fuzzy sets and fuzzy propositions

• Note that T is numerically trivial for unqualified propositions
 – The values are identical to those provided by the fuzzy membership function
 – This does not happen when dealing with qualified propositions (more complex $T(p)$ functions)
Unconditional and Qualified Propositions

- Two different canonical forms to represent these propositions:
 \[p : \text{V is F is S} \]
 \[p : \text{Pr(V is F) is P} \]

- V and F have the same meaning as in previous slides
- S is a fuzzy truth qualifier
- P is a fuzzy probability qualifier
Truth-qualified Propositions

• There are different truth qualifiers
 – Unqualified propositions are special truth-qualified propositions (S is assumed to be true)
Truth-qualified Propositions

• In general, the degree of truth $T(p)$ of any truth-qualified proposition p is:

$$T(p) = \mu_S(\mu_F(v)), \quad \forall v \in E$$

• The membership function $\mu_G = \mu_s \circ \mu_F$ can be interpreted as the unqualified proposition “V is G”
Example

• Proposition “Tina is young is very true”
 – Predicate: young
 – Qualifier: very true

• Let us suppose that the age of Tina is 26
Probability-qualified Proposition

- There are different probability qualifiers:
Probability-qualified Propositions

• Given a probability distribution f on V, we can define the probability of a fuzzy proposition:

$$\Pr(V \text{ is } F) = \sum_{v \in V} f(v) \cdot \mu_F(v)$$

• We calculate the degree $T(p)$ to which a proposition of the form $[\Pr(V \text{ is } F) \text{ is } P]$ is true as:

$$T(p) = \mu_p(\Pr(V \text{ is } F))) = \mu_p\left(\sum_{v \in V} f(v) \cdot \mu_F(v)\right)$$
Example

• p: Pro(temperature is around 75 F) is likely
• The predicate “around 75 F” is represented by the following membership function:
Example

• The probability distribution obtained from relevant statistical data over many years is:

<table>
<thead>
<tr>
<th>t</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(t)</td>
<td>.002</td>
<td>.005</td>
<td>.005</td>
<td>.01</td>
<td>.04</td>
<td>.11</td>
<td>.15</td>
<td>.21</td>
<td>.16</td>
<td>.14</td>
<td>.11</td>
<td>.04</td>
<td>.01</td>
<td>.005</td>
<td>.002</td>
<td>.001</td>
</tr>
</tbody>
</table>

• Then, we calculate $\Pr(\text{temperature is around } 75 \text{ F})$ as follows:

$$\Pr(t \text{ is around } 75^\circ F) = .01 \times .25 + .04 \times .5 + .11 \times .75 + .15 \times 1 + .21 \times 1$$

$$+ .16 \times 1 + .14 \times .75 + .11 \times .5 + .04 \times .25 = .8$$
Example

• Now, we use the fuzzy qualifier to calculate the truth value of the predicate:
Conditional and Unqualified Propositions

• The canonical form p of fuzzy propositions of this type is:

$$ p : \text{if } X \text{ is } A, \text{ then } Y \text{ is } B $$

• X, Y are variables in universes E_1 and E_2
• A, B are fuzzy sets on X, Y
• These propositions may also viewed as propositions of the form:

$$ \langle X, Y \rangle \text{ is } R $$
Conditional and Unqualified Propositions

• R is a fuzzy set on $X \times Y$ defined as:

$$R(x, y) = \mathcal{J} [\mu_A(x), \mu_B(y)]$$

• \mathcal{J} represents a suitable fuzzy implication
 – There are many of them
• In our examples we will use the Lukasiewicz implication:

$$\mathcal{J}(a, b) = \min(1, 1 - a + b)$$
Example

• $A = \frac{1}{x_1} + \frac{.8}{x_2} + \frac{1}{x_3}$
• $B = \frac{.5}{y_1} + \frac{1}{y_2}$
• Łukasiewicz implication $\vdash J = \min(1, 1-a+b)$
• ¿R?

$T(p) = 1$ when $(X = x_1 \text{ and } Y = y_1)$
• $T(p) = .7$ when $(X = x_2 \text{ and } Y = y_1)$
• and so on...
Conditional and Qualified Propositions

• Propositions of this type can be characterized by two different canonical forms:

\[p : (\text{if } X \text{ is } A, \text{ then } Y \text{ is } B) \text{ is } S \]
\[p : \Pr(X \text{ is } A | Y \text{ is } B) \text{ is } P \]

• S is a fuzzy truth qualifier
• P is a fuzzy probability qualifier
• \(\Pr(X \text{ is } A | Y \text{ is } B) \) is a conditional probability
• Methods introduced before can be combined to deal with propositions of this type
Exercise

• Fuzzy Predicates
 - $\mu_{\text{tall}} = 0.5/160 + 0.75/170 + 1/180 + 1/190$
 - $\mu_{\text{short}} = 1/150 + 1/160 + 0.75/170 + 0.5/180$

• Statistics

<table>
<thead>
<tr>
<th>Couple</th>
<th>Husband (height, cm)</th>
<th>Wife (height, cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>190</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>190</td>
</tr>
</tbody>
</table>

• Calculate the truth value associated to the following proposition:
 “Pr(husband is tall | wife is short) is likely”

• Use the Lukasiewicz implication
Homework

• Exercise:
 – Describe the method to deal with conditional and truth-qualified propositions
 – Provide a concrete example